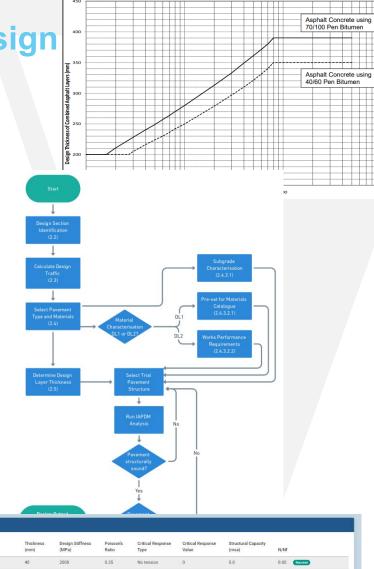
TII Standards Roadshow – May 2024

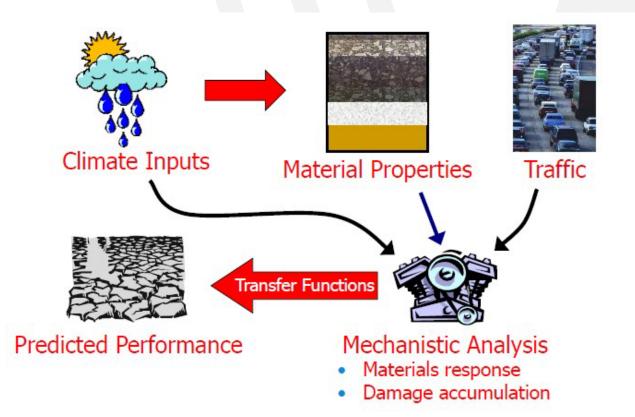

Irish Analytic Pavement Design Method (IAPDM)

Transport Infrastructure Ireland Edward Winterlich, 3rd May 2024

DN-PAV-03021 Analytical Pavement & Foundation Design & the Irish Analytic Pavement Design Method

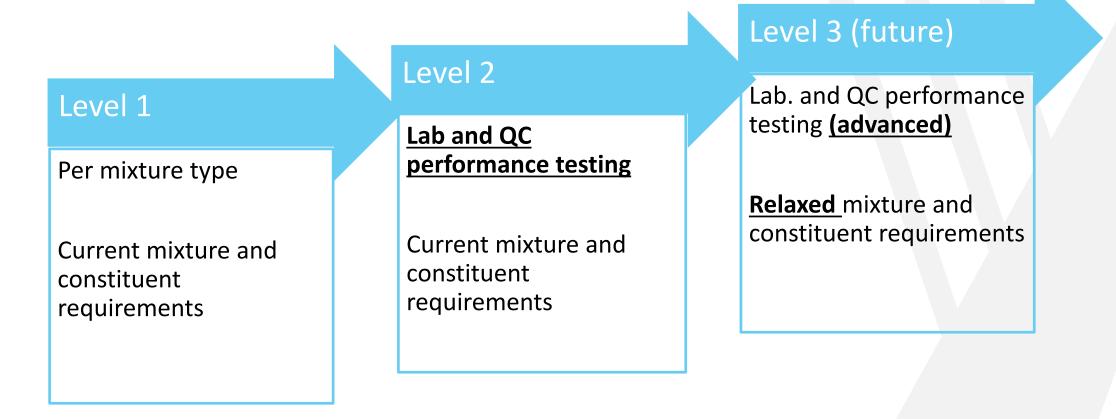
- Updated DN-PAV-03021 published in August 2022
 - Previous Version (HD25-26/10) WITHDRAWN
- Design workflows provided for:
 - New pavement design
 - Existing pavement strengthening / overlay
- DN-PAV-03021 the IAPDM are mandatory for pavement design
- The IAPDM facilitates:
 - Web-based Mechanistic-Empirical pavement structural evaluation
 - Optimise pavement material use
 - Compare designs with innovative materials
 - Design levels:
 - Level 1 Pre-set material categories with generalised performance characteristics
 - Level 2 Material specification performance characterisation
- Request access <u>iapdm@tii.ie</u>

Surface Modulus = 9


IAPDM Guide and Online Tutorials

- The correct implementation of DN-PAV-03021 is support by:
 - IAPDM Guide Document
 - Online Tutorials
- IAPDM Guide Document
 - Provides worked examples of common design problems and IAPDM implementation
 - Examples of new pavement design and existing pavement strengthening / overlay
 - Respond to common challenges experienced by users to date
- Online Tutorials
 - Realtime worked examples of common design problems and IAPDM implementation
 - Live tutor-delegate interaction to response to questions

Development of the IAPDM


- Mechanistic-Empirical Pavement Design
- United States, Netherlands, France, Austria
- Material performance characteristics
- Irish environmental and loading conditions
- Long term performance e.g. cracking, deformation

Material Design Levels – Modelling Pavement Performance

• Design levels allow for the optimisation of material use

Material Design Levels

- Material Characterisation
 - Design Levels 1 and 2
 - Employer designed or DB/ECI/NEC
- Design Level 1
 - Pre-set material modelling parameters
 - Material constituent and mixture requirements
- Design Level 2
 - Specific material testing / characterisation
 - Material ranked /categorised
 - Influences modelling parameters
 - Pavement life / deterioration modelling

С	Test Method ¹	Performance	Performance Category
Stiffness ¹	Indirect Tensile Stiffness Modulus (MPa) EN 12697-26:2018 Annex C IT-CY 20°C	≥1800	S1
		≥2500	S2
		≥4500	S3
	11 01 20 0	≥6500	S4
Resistance to Fatigue	ϵ_6 (failure strain level at $1x10^6$ load	<130	F1
	repetitions)	≥130	F2
	EN 12697-24:2018 Annex E, IT-CY at 20°C	≥190	F3

a Round Material Works Performance Testing for Design Loval

1. The above limits relate to the minimum of the average of the results from a set of test specimens.

2. Works testing frequencies to be agreed with TII Network Management on a project specific basis.

Table D4

IAPDM Web-based Software – Manage Projects and Designs

≡ TII Irish Analytic Pavement Design Method Hi, Alan Lynch 📃 Dashboard & Search Project Dashboard New Project / Design 6 29 1 Materials Database Help Projects Created by You A Feedback Your Projects 4 active projects ~ Projects Status Name Code Designs IAPDM Layer Stiffness Sensitivity Analysis 001 3 Active Edit Closed 01 3 test View IAPDM Layer Stiffness Sensitivity Analysis 0001 13 Closed View test 001 6 Active Edit IAPDM Layer Stiffness Sensitivity Analysis 1 3 Active Edit 01 EPS trial 1 Active Edit

IAPDM Web-based Software – Materials Database

Materials for Level 1				
ow 10 🗸 entries			Search:	
Name	Material Type≎	Modulus (MPa)≑	Poisson Ratio	Ŷ
6F2 (CC-SPW-00600)	Unbound Granular Material	100	0.35	
AC20 40/60	Bituminous Bound Material	4700	0.35	
AC20 70/100	Bituminous Bound Material	3100	0.35	
AC32 40/60	Bituminous Bound Material	4700	0.35	
AC32 70/100	Bituminous Bound Material	3100	0.35	
HBM A C12/15 (CC-SPW-00800)	Hydraulically Bound Granular Material	40400	0.2	
HBM A C16/20 (CC-SPW-00800)	Hydraulically Bound Granular Material	44700	0.2	
HBM A C8/10 (CC-SPW-00800)	Hydraulically Bound Granular Material	34500	0.2	
HBM B C12/15 (CC-SPW-00800)	Hydraulically Bound Granular Material	38800	0.2	
HBM B C16/20 (CC-SPW-00800)	Hydraulically Bound Granular Material	42900	0.2	

IAPDM Web-based Software – Pavement Design Workflow

Standard	Axle Setup		🕑 Design Traff	3 Pavement Structure			
	Layer Type		Material		h (mm)	E (MPa)	v
Layer 1	Surface	~	HRA	~	50	2000.00	0.35
Layer 2	Binder	~	AC20 40/60	~	50	4700.00	0.35
Layer 3	Base 1	~	AC32 40/60	•	100	4700.00	0.35
Layer 4	Base 2	~	AC32 40/60	~	100	4700.00	0.35
Layer 5	Subbase	~	UGM A (CC-SPW-00800)	~	150	200.00	0.35
Layer 6	Capping	~	6F2 (CC-SPW-00600)	~	200	100.00	0.35
Layer 7	Subgrade	~	Subgrade	~	Semi-infinite	100.00	0.45

IAPDM Web-based Software – Design Analysis Results

nalyais Output										
Layer No	Layer Type	Material	Thickness (mm)	Design Stiffness (MPa)	Poissonis Ratio	Critical Response Type	Critical Response Value	Structural Capacity (msa)	NUNF	
5	Surface	HRA	40	2000	0.35	No tension	0	0.0	0.00	-
z	Binder	AC20 40/69	60	4700	0.35	epsilon r (Microns)	-0	> 100	0.00	(Second)
8	Base 1	AC32 40/60	100	4700	0.35	epsilon r (Microns)	-148	1.7	5.86	0
4	Unspecified	Not Considered	O	D	0.00	None	0	0.0	0.00	No Layer
5	Subbese	UGM A (CC-SPW-00800)	150	200	0.35	N/a	-	•	-	
6	Capping	6F2 (CC-SPW-00600)	200	100	0.35	N/a	-	-3	-	(SERIES)
7	Subgrade	Subgrade	Semi-infinite	32	0.45	epsilon z (Microns)	395	1.7	5.84	(BORRING THE THE

FC = 1

Surface Modulus = 83

END